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We incorporate an attractive interaction in a two-dimensional optimal velocity model and investigate the
stability of homogeneous flow in the linear approximation. There exists a different type of instability in this
model. We show the phase diagram and the behavior of the flow in each phase by numerical simulations. A
new phase due to the new instability appears at low density, and the instability can be a candidate of the group
formation mechanism of organisms.
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I. INTRODUCTION

Traffic flow, pedestrian flow, and some related systems
present interesting phenomena and have been studied from
the physical viewpoint �1–5�. Pedestrian flow is an important
issue also from the engineering viewpoint �6,7� and various
models have been proposed to explain the dynamical behav-
ior of pedestrians and to apply to realistic problems �8–16�.
In a previous paper, we proposed a two-dimensional optimal
velocity �OV� model to study the pedestrian dynamics �17�.
In the model the motion of pedestrians is described by a
simple dynamical equation of motion and we can investigate
the property of pedestrian flow not only numerically but also
analytically. In the work, we supposed that the interaction
among pedestrians is repulsive because pedestrians keep a
certain distance from others to avoid collisions. We obtained
the stability condition of homogeneous flow of pedestrians
and also clarified the phase structure in this model.

As a system related to pedestrians, the collective motion
of various organisms has interesting features and has been
investigated �18–29�. In such models, the interactions among
organisms are supposed to be repulsive �separation effect� at
a short distance and attractive �cohesion effect� at a large
distance. The separation force is quite similar to the interac-
tion among pedestrians, and the existence of attractive force
is one of the differences between pedestrians and organisms.
Thus it is an interesting problem how the attractive interac-
tion changes the property of pedestrian flow.

In this paper, we introduce the attractive interaction to the
two-dimensional OV model and investigate the effect of the
attractive interaction to the instability of pedestrian flow. The
interaction in the model is expressed by a single function
�OV function�, and we can introduce the attractive interac-

tion only by changing a parameter of the OV function. By
restricting the interaction as above, we can understand both
one- and two-dimensional phenomena in a unified way �33�.
First we estimate the stability conditions of the homogeneous
flow solution in the linear approximation. From these results,
we can draw the phase diagrams. The behavior of the flow in
each phase is confirmed by numerical simulations.

In Sec. II we present a brief review of the two-
dimensional OV model. We carry out the linear analysis of
the homogeneous flow and find the stability conditions in
Sec. III. The property of the stability condition is investi-
gated in Sec. IV. In Sec. V, we show the phase diagrams and
the snapshots of the flow in some typical cases. Section VI is
devoted to summary and discussion.

II. TWO-DIMENSIONAL OV MODEL

First we briefly review the two-dimensional OV model
�17�. In the model, pedestrians are treated as identical point
particles moving in the two-dimensional space. The basic
concept of the OV model is that each particle controls its
acceleration in order to reduce the difference between the
optimal velocity and its real velocity. The optimal velocity is
decided by its “desired velocity” and interactions with other
particles. A particle moves with the desired velocity, if it is
alone. The model is expressed by the equation of motion

d2

dt2x� j�t� = a��V� 0 + �
k

F� �r�kj�t��� −
d

dt
x� j�t�	 , �1�

F� �r�kj� = f�rkj��1 + cos ��n�kj , �2�

f�rkj� = ��tanh ��rkj − b� + c� , �3�

where x� j = �xj ,yj� is the position of the jth particle, and r�kj

=x�k−x� j, rkj = 
r�kj
, cos �= �xk−xj� /rkj, and n�kj =r�kj /rkj. a is
“sensitivity,” which represents the strength of reaction of
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each particle. For simplicity, particles are supposed to move

in the positive direction of the x axis, and V� 0= �V0 ,0� is a

constant vector which expresses the desired velocity. F�

= �Fx ,Fy� expresses the interaction between particles and its
form is a straightforward extension of the one-dimensional

OV model. In order that F� has the same dimension as V� ,
parameters � ,� ,b are supposed to have suitable dimensions.
Due to the factor �1+cos ��, a particle is more sensitive to
particles in front than those behind. By taking this form, we
can understand both one- and two-dimensional phenomena
in a unified way.

In numerical simulations and in the estimation of explicit
values, we set �=1 /4, �=2.5, and b=1, for convenience.

The sole role of V� 0 is to fix the direction of motion and the
magnitude V0 is meaningless, because V0 can be changed
arbitrarily by the coordinate transformation. The parameter c
is varied in the range −1�c�1 �see Fig. 1�. c=−1 means
that the interaction is repulsive, and c=1 means that the in-
teraction is attractive. For the other c, the interaction is at-
tractive at large distance and repulsive at short distance.

Here we note that the cutoff of the attractive interaction is
necessary to avoid the divergence of the summation over all
particles. In the linear analysis it is satisfied by considering
only the nearest-neighbor interaction, and in numerical simu-
lations we introduce the cutoff at an appropriate value which
can take into account the nearest-neighbor interaction.

Next we derive the linearized equation in the same way as
the previous paper �17�. In Eq. �1�, there is a homogeneous
flow solution

�xj,yj� = �Xj + vxt,Y j + vyt� , �4�

where �Xj ,Y j� represents sites on a triangular lattice as
shown in the Appendix. All particles move at a constant ve-
locity

vx = V0 + �
k

Fx�Xk − Xj,Yk − Y j� ,

vy = �
k

Fy�Xk − Xj,Yk − Y j� . �5�

From now on we consider only the nearest-neighbor interac-
tion, and the summation of Eq. �5� is taken over six particles.
By considering a small perturbation on the homogeneous
flow solution �4�, we obtain the linearized equation

d2

dt2xj = �
k

�Ak�xk − xj� + Bk�yk − yj�� −
d

dt
xj ,

d2

dt2 yj = �
k

�Ck�xk − xj� + Dk�yk − yj�� −
d

dt
yj , �6�

where


Ak = �xFx�x,y�
x=Xk−Xj,y=Yk−Yj
,


Bk = �yFx�x,y�
x=Xk−Xj,y=Yk−Yj
,


Ck = �yFy�x,y�
x=Xk−Xj,y=Yk−Yj
,


Dk = �yFy�x,y�
x=Xk−Xj,y=Yk−Yj
. �7�

For simplicity, we removed the sensitivity a by the replace-
ment t→ t /a, V0→aV0, F→aF. We can easily restore a in
the final result by the inverse replacement. The explicit forms
of Ak, Bk, Ck, and Dk are shown in the Appendix.

III. STABILITY CONDITION

In this section we discuss mode solutions of the linearized
Eq. �6� and their stability conditions. In previous works we
have considered the mode solutions whose polarizations are
fixed. Here a different formulation is adopted to find a dif-
ferent condition.

Generally, the mode solutions can be written as

xj = �1 exp�i�t + i�kXj + mY j�� , �8�

yj = �2 exp�i�t + i�kXj + mY j�� , �9�

where the wave vector �k ,m� is a constant vector but the
polarization ��1 ,�2� is not supposed to be a constant. Then
the linearized equations become

− �1�2 = �1Ā + �2B̄ − i�1� , �10�

− �2�2 = �1C̄ + �2D̄ − i�2� , �11�

where

Ā = 2��A1 + A5��cos ks cos mu − 1� + A3�cos 2mu − 1��

+ 2i�A1 − A5�sin ks cos mu , �12�

D̄ = 2��D1 + D5��cos ks cos mu − 1� + D3�cos 2mu − 1��

+ 2i�D1 − D5�sin ks cos mu , �13�

0

0 1 2 3

c=1.0

c=0.0

c=−1.0

f(r)

distance r

FIG. 1. r-dependence of the interaction. The interaction is at-
tractive for f�r��0 and repulsive for f�r�	0. Solid, dashed, and
dotted lines represent f�r� for the cases c=−1, c=0, and c=1, re-
spectively. The vertical line at r=3 represents the cutoff of f�r�. In
numerical simulations the value of cutoff is varied depending on the
density of particles.
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B̄ = − 2�B1 − B5�sin ks sin mu + 2i�B1 + B5�cos ks sin mu ,

�14�

C̄ = − 2�C1 − C5�sin ks sin mu + 2i��C1 + C5�cos ks sin mu

+ C3 sin 2mu� . �15�

Here s=r cos�
 /6� and u=r sin�
 /6� and r is the distance
among particles �see the Appendix�.

The stability condition of the homogeneous flow is given
by the condition that all of ��k ,m� does not have the nega-
tive imaginary part. The analysis is divided to three parts
depending on the polarization ��1 ,�2� for convenience.

�1� ��1 ,�2�= �� ,0�.
In this case the polarization is fixed, and the analysis is

reduced to that in the previous paper. Here we show the
results in two typical cases.

�a� m=0: longitudinal mode along the x-axis.
�b� k=0: transverse mode along the y-axis.
�2� ��1 ,�2�= �0,��.
In the same way as above, we show the results in two

cases.
�a� m=0: transverse mode along the x-axis.
�b� k=0: longitudinal mode along the y-axis.
�3� ��1 ,�2�= �1,��.
This is a different type of mode solutions and is polarized

elliptically. The polarization is not constant but depends on
the particle distance r. The results in this case include those
in �1a�, �1b�, �2a�, and �2b� as special cases.

A. Longitudinal mode along the x axis

Substituting ��1 ,�2�= �� ,0� and m=0 into Eqs. �10� and
�11�, we find

− �2 = Ā − i� , �16�

C̄ = 0, �17�

where

Ā = 2�A1 + A5��cos ks − 1� + 2i�A1 − A5�sin ks . �18�

The constraint �17� is trivially satisfied and the stability con-
dition is given by

a � 4
�A1 − A5�2

A1 + A5
, �19�

where we restored the sensitivity a by the replacement F
→F /a. From Eq. �19�, we can find critical curves, which are
the border of the stable region, and show them in typical
cases �see Fig. 2�.

B. Transverse mode along the y axis

In this case ��1 ,�2�= �� ,0� and k=0. Then Eqs. �10� and
�11� become

− �2 = Ā − i� , �20�

C̄ = 2i sin mu��C1 + C5� + 2C3 cos mu� = 0, �21�

where Ā=2��A1+A5��cos mu−1�+A3�cos 2mu−1��. Because

Ā is real, the stability condition is Ā	0.
There are two solutions of the constraint �21�.
�i� sin mu=0.
The unstable mode exists for mu=
 only because �k ,m�

= �0,0� is a stable mode. Then the stability condition is

A1 + A5 � 0. �22�

�ii� �C1+C5�+2C3 cos mu=0.
In this case both of following two inequalities are the

stability condition:

�−
C1 + C5

2C3
� � 1, �23�

Ā =
1

C3
�2C3�A1 + 2A3 + A5� + �A1 + A5��C1 + C5�

− �C1 + C5�2� 	 0. �24�

Table I shows the numerical values of Eqs. �22�–�24� in typi-
cal cases. These values are calculated in the cases of �
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FIG. 2. Solid, dashed, and dotted curves represent the critical
curves given by Eq. �19� for the cases c=−1, c=0, and c=1, re-
spectively. The homogeneous flow is stable in the region above
each curve.

TABLE I. Solutions of the conditions �22�–�24� in the cases of c=−1.0, −0.5, 0.0, 0.5, and 1.0.

c=−1.0 c=−0.5 c=0.0 c=0.5 c=1.0

�i� r�0.59 r�0.54 r�0.47 r�0.36 r�0.0

�ii� r�0.94 r�0.84 r�0.73 r�0.58 r�0.0

EFFECT OF ATTRACTIVE INTERACTION ON… PHYSICAL REVIEW E 77, 016105 �2008�

016105-3



=1 /4, �=2.5, and b=1. Hereafter we will calculate critical
values in the same parameter.

C. Transverse mode along the x axis

Substituting ��1 ,�2�= �0,�� and m=0 into Eqs. �10� and
�11�, we find

B̄ = 0, �25�

− �2 = D̄ − i� , �26�

where

D̄ = 2�D1 + D5��cos ks − 1� + 2i�D1 − D5�sin ks . �27�

The constraint �25� is trivially satisfied and the stability con-
dition is

a � 4
�D1 − D5�2

D1 + D5
. �28�

Figure 3 shows the plots of Eq. �28� for typical cases.

D. Longitudinal mode along the y axis

In this case ��1 ,�2�= �0,�� and k=0. Then Eqs. �10� and
�11� are

B̄ = 2i�B1 + B5�sin mu = 0, �29�

− �2 = D̄ − i� , �30�

where D̄=2��D1+D5��cos mu−1�+D3�cos 2mu−1��. Be-

cause D̄ is real, the stability condition is D̄	0. The con-
straint �29� indicates mu=
, and the stability condition be-
comes

D1 + D5 � 0. �31�

Table II shows the numerical values of Eq. �31� for typical
cases.

E. Elliptically polarized mode

After the substitution of ��1 ,�2�= �1,�� into Eqs. �10� and
�11�, we rewrite the equations as follows:

�B̄��2 + �Ā − D̄�� − C̄ = 0, �32�

�2 − i� + Ā + �B̄ = 0. �33�

These are second order algebraic equations with respect to �
and �, and we can solve these equations. There are two so-
lutions ��k ,m , f�r�� and four solutions ��k ,m , f�r�� in gen-
eral. However, those are too complicated and we cannot ob-
tain the stability condition for k, m, f�r�. Instead, we solve
Eqs. �32� and �33� for each �k ,m� and r numerically. Then
we can search the condition that all of � do not have the
negative imaginary part. The results for typical cases are
shown in Fig. 4.

For the case c=0.0 we find that the critical curve in Fig. 4
consists of three parts: left vertical curve, middle curve, and
right vertical line. The left curve is the same as that in Fig. 3,
and the middle curve is the same as that in Fig. 2. To see the
coincidence of the critical curves, we show the critical curve
and Eqs. �19� and �28� in Fig. 5.

This result can be understood as follows. The elliptically
polarized mode reduces to �1a�,�1b� in the case �→0, and
reduces to �2a�,�2b� in the case �→�. It is natural that the
conditions �19� and �28� are included in this mode.

On the other hand, there is no corresponding condition for
the vertical line �for example, at r=1.39 for c=0.0� in other
modes. This stability condition appears only in the elliptic
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FIG. 3. Solid, dashed, and dotted curves represent the critical
curves given by Eq. �28� for the cases c=−1, c=0, and c=1, re-
spectively. The homogeneous flow is stable in the region above
each curve.

TABLE II. Solutions of the condition �31� in the cases of c=
−1.0, −0.5, 0.0, 0.5, and 1.0.

c=−1.0 c=−0.5 c=0.0 c=0.5 c=1.0

r�1.05 r�0.91 r�0.78 r�0.62 r�0.0
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FIG. 4. Solid, dashed, and dotted curves represent the critical
curves obtained by solving Eqs. �32� and �33� numerically for the
cases c=−1, c=0, and c=1, respectively. The homogeneous flow is
stable in the region above each curve. In the cases c=0 and c=1,
the stable region is enclosed by curves.
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mode. Table III shows the values corresponding to the verti-
cal lines, those are obtained by solving Eqs. �32� and �33�
numerically in typical cases.

IV. STABILITY CONDITION

We investigate the stability condition which is obtained
by solving the linearized equation numerically in the previ-
ous section. Numerical simulations �see Sec. V� indicate that
the instability due to elliptically polarized modes starts from
long wavelength modes. Then we use the long wavelength
approximation k ,m→0.

If we take the first order of k and m, Eqs. �12�–�15� be-
come

Ā � 2i�A1 − A5�ks ,

D̄ � 2i�D1 − D5�ks ,

B̄ � 2i�B1 + B5�mu ,

C̄ � 2i�C1 + C5 + 2C3�mu , �34�

that is, Ā , B̄ , C̄ , D̄�1. The solution of Eq. �32� is

� =
1

2B̄
�− �Ā − D̄� ± 
�Ā − D̄�2 + 4B̄C̄� , �35�

and therefore Ā+�B̄�1. By use of this approximation, the
solution of Eq. �33� is

� =
1

2
�i ± 
− 1 − 4�Ā + �B̄�� �

i

2
�1 ± �1 + 2�Ā + �B̄���

= i�1 + Ā + �B̄�, − i�Ā + �B̄� . �36�

The first solution in Eq. �36� has a positive imaginary part,
and unstable modes exist only in the second solution. Sub-
stituting Eqs. �34� and �35� into the second solution in Eq.
�36�, we find

� = �A1 − A5 + D1 − D5�ks ± ��A1 − A5 − D1 + D5�2�ks�2

+ 4�B1 + B5��C1 + C5 + 2C3��mu�2�1/2. �37�

Only in the case of �B1+B5��C1+C5+2C3�	0, � can have a
negative imaginary part for appropriate k ,m, for example,
k=0 and m�0. Then the stability condition is

�B1 + B5��C1 + C5 + 2C3� � 0. �38�

Table IV shows the numerical values of Eq. �38� with the
results in Sec. III. The values obtained from Eq. �38� coin-
cide with those in Table III completely. The critical values
for Eq. �38� in Table IV can be calculated by C1+C5+2C3
=0 or B1+B5=0. By comparison with the critical values for
the conditions �23� and �24�, we find that the condition origi-
nates from B1+B5=0.

V. NUMERICAL SIMULATION AND PHASE DIAGRAMS

From the stability conditions obtained in Secs. III and IV,
we can draw the phase diagrams. Figures 6�a�–6�c� are the
phase diagrams for c=−1.0, c=0.0, and c=1.0, respectively.
The homogeneous flow is stable in the region S. L represents
the region where only longitudinal modes along the x axis
�density wave� are unstable. In the region T, only transverse
modes along the x axis are unstable, and in the region E, only
elliptically polarized modes are unstable.

The behavior of the flow is investigated by numerical
simulations. Figures 7–9 show snapshots of the flow ob-

TABLE III. Numerical values corresponding to the vertical lines
in Fig. 4. The values are obtained by solving Eqs. �32� and �33�
numerically for the cases of c=−1.0, −0.5, 0.0, 0.5, and 1.0.

c=−1.0 c=−0.5 c=0.0 c=0.5 c=1.0

r	 +� r	1.58 r	1.39 r	1.26 r	1.12

TABLE IV. Solutions of the stability conditions �22� and �23� with Eqs. �24�, �38�, and �31� in the cases
of c=−1.0, −0.5, 0.0, 0.5, and 1.0.

c=−1.0 c=−0.5 c=0.0 c=0.5 c=1.0

Equation �22� 0.59	r 0.54	r 0.47	r 0.36	r 0.0	r

Equations �23� and �24� 0.94	r 0.84	r 0.73	r 0.58	r 0.0	r

Equation �38� 0.94	r 0.84	r	1.58 0.73	r	1.39 0.58	r	1.26 0.42	r	1.12

Equation �31� 1.05	r 0.91	r 0.78	r 0.62	r 0.0	r
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FIG. 5. Critical curves for the case c=0. Solid curve is obtained
by solving Eqs. �32� and �33� numerically. Dashed and dotted
curves represent the critical curves given by Eqs. �19� and �28�,
respectively.
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tained by numerical simulations in the case c=0.0 �see Fig.
6�b��. All simulations are carried out in the periodic bound-
ary conditions along both the x and y axes, and all particles
are supposed to move in the positive x direction. In order to
compare with the results of the linear analysis, we set the

homogeneous flow as the initial condition, except for Figs.
9�c� and 9�d�. In numerical simulations, the flow in the above
four regions can be easily distinguished and the boundaries
among them are identified clearly. In other regions where
several modes are unstable simultaneously, the behaviors of
the flow are complicated and the boundaries among them are
not clear.

Figure 7�a� is the snapshot in the case of r=1.0 and a
=5.0. The parameters exist in the region �S� where the ho-
mogeneous flow is stable. This snapshot shows the flow after
sufficient relaxation time, but it is the same as the initial
flow.

Figure 7�b� is the snapshot in the case of r=0.785 and a
=3.0, where transverse modes along the x axis are unstable
�T�. The snapshot shows the flow after sufficient relaxation
time. We can see that the transverse waves have emerged.

Figure 8 is the snapshots in the case of r=1.0 and a
=2.0, where longitudinal modes along the x axis are unstable
�L�. Figure 8�a� is a snapshot in the early stage and Fig. 8�b�
shows the flow after sufficient relaxation time. We can see
that some defects emerge but the homogeneity remains in a
large part of the flow. The flow is characterized by the emer-
gence of the density wave, and this phase just corresponds to
the congested phase of traffic flow.

Figure 9 is the snapshots in the case of r=2.0 and a
=3.0, where elliptically polarized modes are unstable �E�.
Figure 9�a� shows the flow in the early stage, where the
elliptically polarized mode is enhanced. After a sufficiently
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FIG. 6. Phase diagrams for the cases �a� c=−1.0, �b� c=0.0, and
�c� c=1.0. Solid and dashed curves are critical curves for longitu-
dinal and transverse modes along the x axis, respectively. Dotted
lines are critical lines for modes along the y axis. Dashed dotted
lines are critical lines for elliptically polarized modes. S represents
the region where the homogeneous flow is stable. L represents the
region where only longitudinal modes along the x axis are unstable.
In the narrow region T between dashed and dotted lines, only trans-
verse modes along the x axis are unstable, and in the region E only
the elliptically polarized modes are unstable.

FIG. 7. Snapshots of the flow after a sufficiently large number of
simulation steps for the case c=0.0. Boundary conditions are peri-
odic along the x and y axes. Parameters in the figure �a� r=1.0, a
=5.0 and �b� r=0.785, a=3.0 correspond to the region �s� and �t�,
respectively. We use black disks to show the position of particles
clearly. All particles are supposed to move rightward.
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large number of simulation steps, particles make several iso-
lated groups and the homogeneity is completely broken �see
Fig. 9�b��. Here we note that this property of making groups
is common to the cases of −1	c�1 except for the distance
among particles in groups, which depend on the value of c.

We consider that the resulting pattern of the flow in the
region �E� is characterized by the formation of groups. If we

change the initial conditions, different patterns emerge, but
they are qualitatively the same. For example, Fig. 9�d� is the
result of a simulation in the different initial condition Fig.
9�c� with the same parameters as Figs. 9�a� and 9�b�. The
difference between Figs. 9�b� and 9�d� is not essential from
the physical viewpoint.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated the stability conditions
of the homogeneous flow in the two-dimensional OV model
with attractive interaction. We found a stability condition for
the elliptically polarized modes. The instability originating
from these modes appears only in the model with attractive
interaction, and changes the phase structure as shown in Fig.
6. In the completely repulsive case �c=−1�, the low density
flow is stable. If the attractive interaction exists, the low
density flow is no longer stable. In this case the stable region
exists only around r�1. We may naturally expect that the
flow is stable at r where the OV function f�r� is zero, that is,
no force act among particles. However, the stable region r
�1 does not correspond to such r, but corresponds to the
region where the OV function has a large �positive� gradient.
This is a specific feature of the elliptically polarized modes
because other modes are unstable in the region. This property
depends both on the dynamics and on the form of OV func-
tion. We cannot find an intuitive interpretation why the ho-
mogeneous flow is stable in such a region.

We find that both of the sparse and dense homogeneous
flows are not stable if the attractive interaction exists. In such
cases the final state of the flow depends on the detail of the
model. In the present model, particles make several stable
groups and there is no interaction among groups due to the
cutoff of the interaction �see Fig. 8�. It is known that pedes-
trians have a tendency to make groups �10�; but we have no

FIG. 8. Snapshots of the flow for the case c=0.0, r=1.0, and
a=2.0. The parameters correspond to the region �l�. �a� The flow at
the early stage and �b� the flow after a sufficiently large number of
simulation steps.

FIG. 9. Snapshots of the flow for the case c=0.0, r=2.0, and a=3.0. The parameters correspond to the region �e�. �a� The flow at the early
stage and �b� the flow after a sufficiently large number of simulation steps. �c� The initial flow of randomly distributed particles and �d� is
its developed state after a sufficiently large number of simulation steps.
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detailed data of the motion of pedestrians to compare with
numerical simulations. On the other hand, it is well-known
that most organisms often form groups, for example, fish
school or flock of birds. We can expect that the instability of
sparse homogeneous flow and the resulting formation of
groups are general features of such biological systems. This
mechanism can be a candidate for the explanation of the
group formation of organisms �30–32�.
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APPENDIX: EXPLICIT FORMS OF A, B, C, D

We assign the number to particles around the jth particle
as shown in Fig. 10. For example, the position of particle 1 is

�s ,u�= �r cos�
 /6� ,r sin�
 /6��, where r is the distance be-
tween two nearest-neighbor particles.

Then the parameters A1 ,A2 , . . . ,A6 ,B1 ,B2 , . . . ,D6 �e.g.,

A1=�xFx�x ,y�
x=s,y=u� are
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, D3 = f�, �A5�

and

A1 = A2, A3 = A4, A5 = A6,

B1 = − B2, B3 = − B4 = 0, B5 = − B6,

C1 = − C2, C3 = − C4, C5 = − C6,

D1 = D2, D3 = D4, D5 = D6. �A6�
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